Table VI. Equations of Weighted Least-Squares Planes^a and Deviations of the Atoms from the Planes for Pd₂(C₁₇H₁₄O)₃·CH₂Cl₂

Atom	Distance, Å	Atom	Distance, A		
Plane through Pentadienone Group $C(1)-C(5)$					
	12.06X - 4.16Y	+ 1.74Z = 4	.55		
C(1)	-0.02(2)	C(4)	-0.01(2)		
C(2)	0.02 (2)	C(5)	0.00(2)		
C(3)	0.01 (1)	O(1)	-0.00(1)		
Pd(1)	2.15 ^b	Pd(2)	2.11 ^b		
Plane	through Pentadier	one Group ((6) - C(10)		
1 Idile	7.91X + 7.97Y	-9.63Z = 1.	.60		
C(6)	0.02 (3)	C(9)	0.01 (2)		
$\tilde{C}(7)$	-0.02(2)	C(10)	-0.01(3)		
C(8)	-0.00(2)	0(2)	0.00(1)		
Pd(1)	2.15 ^b	Pd(2)	2.12 ^b		
Plane through Pentadienone Group $C(11) - C(15)$					
4.18X - 11.62Y + 10.63Z = -3.32					
C(11)	-0.01(2)	C(14)	-0.03 (2)		
C(12)	0.00(1)	C(15)	0.02(1)		
C(13)	-0.02(2)	0(3)	0.01(1)		
Pd(1)	2.13 ^b	Pd(2)	2.16 ^b		

^a Least-squares planes calculated according to W. C. Hamilton, Acta Crystallogr., 14, 185 (1961). Equations given in triclinic coordinates. ^b Not included in the calculation of the plane.

conformational geometries of the ligands as observed two olefin groups are directed roughly normal to the trigonal plane while the other four are much closer to the plane (Table V). A structural feature normally associated with olefin coordination to nucleophilic metals is the direction of substituents back from the olefin plane, away from the olefinmetal bond.^{16,17} This is generally viewed to reflect a decrease in the C-C bond order and has been found to occur for ethylene as well as for olefins with electron-withdrawing substituents.¹⁸ The coordinated dibenzylideneacetone ligands in both Pd₂(DBA)₃ and Pd(DBA)₃, however, show only minor deviations from planarity reflecting weak palladiumolefin bonding (Table VI). The Pd-C distances in Pd₂(DBA)₃ are relatively long, averaging to 2.26 (1) Å but varying significantly over values from 2.124 (12) to 2.421 (11) Å. This average value agrees well with the average Pd-C distance of 2.25 (1) Å in Pd(DBA)₃. These features are consistent with the observed lability of the DBA ligands in these complexes.

Acknowledgments. We wish to thank the Research Corp. and the West Virginia University Computing Center for support of this work.

Registry No. Pd₂(DBA)₃·CH₂Cl₂, 51364-52-4.

Supplementary Material Available. A listing of structure factor amplitudes will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105×148 mm, $24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for \$3.00 for photocopy or \$2.00 for microfiche, referring to code number INORG-74-1891.

(18) C. D. Cook and K. Y. Wan, J. Amer. Chem. Soc., 92, 2595 (1970).

Contribution from the Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Molecular Structure of η^2 -(*cis*-2,3-Dicarbomethoxymethylenecyclopropane)iron Tetracarbonyl (*cis*-Feist's Ester Iron Tetracarbonyl). An Olefin-Iron Complex Stabilized by Relief of Strain

THOMAS H. WHITESIDES,* ROBERT W. SLAVEN, and JOSEPH C. CALABRESE

Received January 16, 1974

The structure of n^2 -cis-2,3-dicarbomethoxymethylenecyclopropane)iron tetracarbonyl (C₁₂H₁₀FeO₈) has been determined by X-ray crystallographic techniques. The compound crystallizes in the orthorhombic space group *Pcmn*, with lattice constants a = 7.047 (1) Å, b = 13.690 (3) Å, and c = 14.510 (2) Å; V = 1399.9 (4) Å³, Z = 4. Full-matrix anisotropic least-squares refinement on the diffractometer-collected intensities of 882 independent reflections resulted in a final conventional *R* value of 4.3%. The refined structure shows several interesting features. The iron atom is located on the same side of the three-membered ring as the ester groups, and intramolecular distances suggest substantial steric congestion between the ester carbonyl groups and the Fe(CO)₄ unit. Considerable rehybridization has occurred at the olefinic linkage in the three-membered ring, and the geometry around the iron atom is interpreted as being intermediate between trigonal bipyramidal and octahedral. The bonding in the complex, and its remarkable stability, are discussed in terms of relief of angle strain accompanying the rehybridization, and the mechanistic implications of the observed stereochemistry are considered.

Introduction

In a recent paper concerning the reaction of iron carbonyls with the cis and trans isomers of Feist's ester (2,3-dicarbomethoxymethylenecyclopropane, 1), we¹ reported the isolation of two complexes to which we ascribed the structure 2, *i.e.*, the tetracarbonyl iron complex of the corresponding olefin. Because Krull² had reported obtaining compounds with very similar physical properties from similar reactions, to which however he assigned a different structure, and be-

(1) T. H. Whitesides and R. W. Slaven, J. Organometal. Chem., 67, 99 (1974).

cause the structure of these small-ring species is inherently interesting, we undertook an investigation of one of our

(2) (a) I. S. Krull, paper presented at the 166th National Meeting of the American Chemical Society, Chicago, Ill., Aug 1973; (b) J. Organometal. Chem., 57, 363 (1973). We thank Professor Krull for a preprint of his article.

AIC400332

compounds by X-ray crystallographic methods. We chose the complex derived from the cis olefin, because, while equivalent bonding information could be obtained from either the cis or trans complex, we were uncertain as to the stereochemistry of the iron atom in the cis compound relative to the esters, *i.e.*, whether the species isolated was 2-cis,cis or 2-cis,trans. The structure we here report confirms

our original structure assignment of 2 as an (olefin)iron tetracarbonyl complex. The stereochemical assignment previously made was based on the steric requirement of the bulky $Fe(CO)_4$ moiety and certain speculative aspects of the chemistry of 2. This stereochemistry is apparently incorrect, and the structure of the compound is unambiguously written as 2-cis, cis. This structure determination, which constitutes, to our knowledge, the third (olefin)tetracarbonyliron complex X-ray structure performed, is apparently of substantially higher precision than the preceding studies^{3,4} and contains the novel structural feature of an iron complexed to a species containing a strained ring.

Experimental Section

Clear crystals of 2-cis were obtained by slow evaporation under nitrogen of a solution in pentane. A flat parallelepiped, centrosymmetrically bounded by the (110), (001), and (010) faces (dimensions $0.43 \times 0.10 \times 0.23$ mm, respectively), was mounted in a Lindemann glass capillary under argon and placed on a Syntex $P\overline{1}$ autodiffractometer equipped with a graphite-monochromated Mo K α radiation source. The preliminary Syntex routines⁵ indicated a primitive orthorhombic cell with dimensions a = 7.047 (1), b = 13.690 (3), and c = 14.510 (2) Å; V = 1399.9 (4) Å³. The mmm Laue symmetry and the associated lattice constants are verified in the Syntex procedure by partial rotation photographic projections along each of the three unit cell axes. The calculated density for Z = 4 of 1.60 g/cm³ agrees within experimental error with the observed value of 1.59 (1) g/cm³ (determined by flotation in carbon tetrachloride-trichloroethylene mixtures).

Data were collected at $2^{\circ} \le 2\theta \le 45^{\circ}$ in the variable-scan speed mode and reduced⁶ in the usual fashion to yield 882 independent reflections for which $I > 2\sigma(I)$. Two standard peaks were monitored after every 50 reflections and indicated no evidence of crystal damage or electronic instability. The deviation of intensities of these standard reflections was about $\pm 3\%$ and appeared to be random. Later the data were corrected for effects of crystal absorption; a range of transmission factors from 0.79 to 0.89 (linear absorption coefficient $\mu = 11.45$ cm⁻¹) was calculated. The observed systematic absences of 0kl (l = 2n + 1)and hk0 (h + k = 2n + 1) are consistent with the centric space group Pcmn (nonstandard setting of Pnma, No. 62, D_{2h}^{-16-7}) or its acentric equivalent $Pc2_1n$. The centric space group, chosen because of the suspected molecular symmetry, was later confirmed by the successful refinement of the structure.

(3) (a) C. Pedone and A. Sirigu, *Inorg. Chem.*, 7, 2614 (1968);
(b) C. Pedone and A. Sirigu, *Acta Crystallogr.*, 23, 759 (1967).

(4) A. R. Luxmoore and M. R. Truter, Acta Crystallogr., 15, 1117 (1962).

(5) R. A. Sparks, et al., "Operations Manual. Syntex PI Diffractometer," Syntex Analytical Instruments, Cupertino, Calif., 1970.
 (6) The integrated intensity (I) was calculated according to the

(c) The integrated intensity (f) was calculated according to the expression $I = [S - (B_1 + B_2)/B_R] T_R$ where S is the scan counts, B_1 and B_2 are the background counts, B_R is the ratio of background time to scan time ($B_R = 0.67$ for this data set) and T_R is the 2θ scan rate in degrees per minute. The standard deviation of I was calculated as $\sigma(I) = T_R[S + (B_1 + B_2)/B_R^2 + q(I)^2]^{1/2}$ where q in this case was set equal to 0.003.

(7) "International Tables for X-Ray Crystallography," Vol. I, 2nd ed, Kynoch Press, Birmingham, England, 1965, p 151. The coordinates of equivalent positions for our setting of *Pcmn* were taken as $t_1^{(x, y, z; 1/2 - x, y, 1/2 + z; 1/2 + x, 1/2 + y, 1/2 - z; -x, 1/2 + y, -z].$

Solution and Refinement of Structure

The structure was determined by classical heavy-atom methods. From the coordinates of the iron atom determined from a Patterson synthesis⁸ an electron density map was calculated $(R_1 = 32.8\%)$,⁹ which allowed the approximate location of all nonhydrogen atoms. Several cycles of full-matrix isotropic least-squares¹⁰ refinement resulted in $R_1 = 10.2\%$ and $R_2 = 12.5\%$. At this point, a difference map yielded peaks corresponding to the expected positions of the hydrogen atoms. Large thermal anisotropy at the iron atom was also observed.

After correction of the data for absorption, four cycles of fullmatrix least-squares refinement on all coordinates, anisotropic temperature factors for all nonhydrogen atoms, and isotropic temperature factors for hydrogen atoms resulted in final $R_1 = 4.3\%$ and $R_2 =$ 4.9%. In the last cycle, the maximum shift in any nonhydrogen atom parameter was 0.15 σ . The standard deviation in an observation of unit weight was 1.17. Comparison of the observed and calculated structure factor amplitudes is made in Table I.¹¹ The final positional and thermal parameters, with errors estimated from the full variancecovariance matrix, are given in Table II. Selected bond lengths and angles are shown in Tables III and IV.

Description of the Structure

The molecule is crystallographically constrained to C_s symmetry with the mirror plane passing through the iron, the two carbon atoms of the C=C double bond, and two of the metal carbonyl groups. The four discrete molecules in the unit cell are separated by normal van der Waals contacts (Table V). The molecular structure, in agreement with our original proposal, is seen to be that of an iron tetracarbonyl-olefin complex of *cis*-Feist's ester, in which the three-membered ring remains intact. In addition, the structure (Figure 1) shows the iron atom and the ester functions are all cis to one another, in contrast to our original assignment.

The Fe(CO)₄ unit is similar to those found for acrylonitrileiron tetracarbonyl⁴ and (fumaric acid)iron tetracarbonyl.³ The C-O bond lengths of the carbonyl groups are very close to 1.13 Å (average 1.130 (7) Å), which is the same within experimental error as those found in carbon monoxide (1.13 Å), Fe(CO)₅ (1.14 (4) Å),¹² (fumaric acid)Fe(CO)₄ (1.12 (6) Å), and (acrylonitrile)Fe(CO)₄ (1.13 (2) Å). There is a slight distortion of the C(13)-Fe-C(13)' angle (175.1°) from linearity; the distortion is *toward* the olefin. The angle between the carbonyl groups in the mirror plane (*i.e.*, C(9)-Fe-C(11)) is $107.4 (3)^{\circ}$, and the angles C(3)-Fe-C(9) and C(2)-Fe-C(11) are 108.1 (2) and 104.7 (3)°, respectively. A more meaningful picture of the coordination geometry at iron is afforded by use of the midpoint (M) of the double bond as a reference. The angles C(9)-Fe-M and C(11)-Fe-M are 128.3 and 124.4°, respectively (Figure 2). The geometry at iron is intermediate between trigonal bipyramidal (TBP) and octahedral. Thus, the angle C(9)-Fe-C(11)is 12.6° smaller than 120° (expected for accurate TBP geome-

(8) All crystallographic programs used in structural determination and least-squares refinement were written by J. C. C. The absorption correction program DEAR (J. F. Blount) uses the gaussian integration method of Busing and Levy. Plots were made using ORTEP (C. K. Johnson).

(9) $R_1 = [\Sigma ||F_0| - |F_0|| \Sigma |F_0|] \times 100\%$ and $R_2 = [\Sigma w_1 ||F_0| - |F_c||^2 / \Sigma w_1 |F_0|^2]^{1/2} \times 100\%$. (10) All least-squares refinements were based on the minimization

(10) All least-squares refinements were based on the minimization of $\Sigma w_i^{\parallel} \|F_0\| - |F_c\|^4$ with the individual weights $w_i = 1/\sigma(F_0)^2$. Atomic scattering factors used for all nonhydrogen atoms are from H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, *Acta Crystallogr.*, 17, 1040 (1964); those for the hydrogen atoms are from R. F. Stewart, E. R. Davidson, and W. T. Simpson, *J. Chem. Phys.*, 42, 3175 (1965). Included in the least-squares refinement was a correction for the anomalous dispersion at iron ($\Delta f' = 0.4, \Delta f'' = 1.0$) taken from "International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, England, 1962, p 215.

(11) See paragraph at end of paper regarding supplementary material.

(12) A. W. Hanson, Acta Crystallogr., 15, 930 (1962).

Tal	ble	Π

Positional Parameters $(\times 10^4)$ for All Atoms and Isotropic Temperature Factors for Hydrogen Atoms $(\times 10^4)^a$

					101 11, 4105		
Ator	n	<u>x</u>	У		Z	<i>B</i> , Å ²	
Fe	38	33.4 (13)	2500.0 (-	-) 1()51.4 (6)		
C(2)	-164	9 (10)	2500 (-)		0 (5)		
C(3)	2		2500 ()		341 (4) 20 (2)		
C(4)	203	13 (0) 18 (6)	1364 (3)	-10	160 (5) 144 (3)		
O(6)	390)7 (5)	1365 (3)	-2	275(2)		
O(7)	323	71 (5)	808 (2)	16	571(2)		
C(8)	486	52 (14)	155 (7)	-15	584 (5)		
C(9)	288	39 (9)	2500 (-)	13	370 (4)		
O(10) 441	3 (7)	2500 ()	15	580 (3)		
C(11)	-97	75 (10)	2500 (-)	21	04 (5)		
O(12)) -180	07 (8) 07 (9)	2500(-)	2,	(33 (4)		
0(14)) 51) 42	77 (6) 27 (6)	356 (3)	5	999 (3) 967 (3)		
HC(2	-223	35 (65)	1899 (28)	-7 (31)	3.6 (11)	
HC(4) 42	21 (52)	1685 (28	,) −14	95 (27)	1.9 (8)	
HC(8	A) 451	13 (88)	-198 (51) -10	001 (47)	8.7 (19)	
HC(8	B) 604	2 (86)	544 (45) –14	09 (41)	6.7 (19)	
HC(8	C) 498	36 (83)	-99 (46) -20)74 (43)	6.7 (17)	
	Aniso	otropic Temperatur	e Factors for	Nonhydrogen Atom	s (X10 ⁴) ^a		
Atom	B ₁₁	B 22	B 33	B ₁₂		B ₁₃ B ₂	3
Fe	135.6 (18)	52.7 (6)	29.1 (4) 0(-)		1.0 (9) 0	(-)
C(2)	153 (17)	79 (6)	39 (4)	0 (-)	-2	21 (6) 0	()
C(3)	110 (12)	52 (4)	27 (3)	0 (-)	_	-6 (5) 0	()
C(4)	165 (9)	40 (2)	31 (2)	-11(4)	-2	20 (4) -4	(2)
O(6)	174 (10)	41(2) 91(2)	32(2)	4 (4) 74 (4)	1	5(4) 0 4(4) 24	(2)
O(7)	316 (10)	63(2)	34(2)	56 (4)	-4	-2(3) = -24	(2)
C(8)	478 (29)	97 (6)	56 (4)	126 (11)	1	6(9) -8	(4)
C(9)	175 (17)	44 (3)	32 (3)	0 (-)	_	6 (6) 0	()
O(10)	159 (11)	95 (4)	47 (2)	0 (-)	-2	28 (5) 0	(-)
C(11)	159 (16)	89 (6)	46 (4)	0 (-)		8 (7) 0	()
O(12)	255 (15)	163 (6)	46 (3)	0 ()	4	-8(5) 0	(-)
O(13)	241(11) 525(14)	66 (3) 58 (2)	38 (2) 76 (3)	-34 (5)		0(5) 3	(3)
^a Standard deviati	ions in least significant	digits in parenthes	70 (3) ies.	-51 (5)		1(3) 5	(2)
Table III. Bond Len	oths (Å)a	0 1	-	Table IV Bond And	ales (deg)a		
En C(2)	$\frac{1}{2} \frac{1}{2} \frac{1}$	7) 1 2 2 2 (5)					110.0 (05)
re-C(2)	2.092(7) $C(3)-O(3)-O(3)-O(3)-O(3)-O(3)-O(3)-O(3)-O$	7) 1.522(3) 7) 1.439(7)		Fe = C(2) = C(3) Fe = C(3) = C(3)	67.5(4)	C(3) - C(4) - HC(4)	112.9 (25)
Fe-C(9)	$L_{825}(7) = C(8) - O(6)$	(7) = 1.439(7) (10) = 1.117(7)		Fe = C(3) = C(4)	1340(3)	O(7) - C(8) - HC(8A)	100 5 (39)
Fe-C(11)	1.803(7) $C(11)-O$	(12) 1.135 (8)		C(2)-C(3)-C(4)	132.8 (4)	O(7)-C(8)-HC(8B)	109.4 (35)
Fe-C(13)	1.804 (5) C(13)-O	(14) 1.134 (6))	C(4)-C(3)-C(4)'	62.8 (4)	O(7)-C(8)-HC(8C)	106.1 (45)
C(2)-C(3)	1.401 (9) C(2)-HC	0.920 (38	3)	C(3)-C(4)-C(4)'	58.6 (2)	HC(8A)-C(8)-HC(8	B) 103.9 (51)
C(3)-C(4)	1.481 (6) $C(4)$ -HC	0.868 (39))	C(3)-C(4)-C(5)	124.0 (4)	HC(8A)-C(8)-HC(8	C) 124.6 (62)
C(4) - C(4)'	1.543(8) C(8)-HC	C(8A) = 1.005 (68)	3)	$C(4)^{-}-C(4)-C(5)$	121.8 (2)	HC(8B)-C(8)-HC(8)	C) 111.2 (59)
C(4) - C(5)	1.490(6) $C(8)-H($	2(8B) 1.020 (55	<i>4)</i>	C(4) = C(5) = O(6)	126.2(4)	C(2)-Fe- $C(3)$	39.8 (3)
C(3) = O(0)	1.187(3) $C(8)-H($	(8C) = 0.790 (02)	2)	O(6) - C(5) - O(7)	1235(4)	C(2) = Fe = C(11)	147.9(3) 104 7 (3)
^a Standard deviati	ons in least significant	digits in parenthes	ses.	C(5)-O(7)-C(8)	115.2(4)	C(2)-Fe- $C(13)$	88.4 (2)
2	0			Fe-C(9)-O(10)	178.8 (5)	C(3)-Fe- $C(9)$	108.1(2)
try) and 17.4° larg	ger than 90° (expec	ted for accurate	octahe-	Fe-C(11)-O(12)	178.5 (6)	C(3)-Fe-C(11)	144.5 (3)
dral geometry). 7	The other distortion	s in the equatori	al plane	Fe-C(13)-O(14)	179.3 (5)	C(3)-Fe-C(13)	87.6 (1)
likewise are in a di	rection consistent v	vith this interpre	tation.	Fe-C(2)-HC(2)	108.4 (29)	C(9)-Fe- $C(11)$	107.4 (3)
The previously det	termined structures	have been discus	ssed in	HC(2) - C(2) - HC(2)'	126.7 (58)	C(9)-Fe- $C(13)$	90.3 (2)
terms of TBP geor	netry, but they both	h show distortion	ns	C(3) - C(2) - HC(2) C(4)' - C(4) - HC(4)	114.0 (29)	C(11) - Fe - C(13) C(13) - Fe - C(13)'	92.2 (2)
similar to those de	termined here. Per	rhaps the best vie	ew of	aStandard deviat	ione in loost	cignificant diaits in m	i, J, I (J)
all three compoun	ds is an intermediat	e structure (vide	infra).		ions in least	significant digits in p	araentneses.

out of the plane of the three-membered ring. The angle bebond of the olefin is substantially lengthened on coordination. tween the plane determined by C(3), C(4), and C(4)' and the The geometry of *trans*-Feist's acid has been determined¹³ and line determined by C(2)-C(3) is 37.6° (Figure 2). For pure is shown in Figure 3. The C=C bond length in this compound sp^3 hybridization, this angle would be 54.8°, and for sp^2 , 0°. Thus, considerable rehybridization has occurred on complexation. While direct comparison is difficult, similar distortions are seen in the case of the fumaric acid and acrylonitrile complexes.

The remainder of the cyclopropane ring shows no changes within experimental precision from the uncomplexed geometry with bond lengths of 1.481 Å (C(3)-C(4)) and 1.543 Å

(13) (a) D. Lloyd, T. C. Downie, and J. C. Speakman, Chem. Ind. (London), 222 (1954); (b) D. R. Petersen, ibid., 904 (1956).

(1.32 Å) should be very close to that in uncomplexed 2-cis.

Thus, the bond length has increased by 0.08 Å to 1.401 (9)

Å, compared to 0.06 and 0.07 Å in the acrylonitrile and

fumaric acid complexes, respectively. The other striking

geometric change which has taken place is tilting of C(2)

As in previously determined structures, the carbon-carbon

Figure 1. View of the molecular structure of 2-cis, cis, showing 50% probability thermal ellipsoids. Hydrogen atoms omitted for clarity.

(C(4)-C(4)') and bond angles of 62.8 and 58.6°. Likewise, the ester functions show normal geometry.

There are several important intramolecular interactions (Table VI), notably between the metal carbonyl groups and the ester carbonyl oxygens O(6) and O(6)'. The smallest distances are O(6)-C(9) (2.937 Å), O(6)-O(10) (3.130 Å), and O(6)-C(13) (3.168 Å). These distances are comparable to or smaller than the sum of the van der Waals radii for carbon $(1.85 \text{ Å})^{14}$ and oxygen (1.4 Å).¹⁴ The resulting repulsions are probably principally responsible for the somewhat greater magnitude of the M-Fe- $\hat{C}(9)$ angle relative to M-Fe-C(11).

Discussion

In view of the rather short nonbonded distances found in this molecule it is particularly surprising that the molecule has the cis, cis stereochemistry and that it displays such pronounced thermal stability. One possible explanation for the observed stereochemistry is that the initial interaction of the ligand with the metal involves one of the ester carbonyl groups (structure 3) and that the formation of the thermodynamically more stable olefin complex occurs via an intramolecular transfer (Scheme I). Stereochemical direction of

Scheme I

an iron moiety has also been observed in these laboratories in the formation of the iron-diene complex 4.15

The other unusual feature of these iron tetracarbonyl com-

(14) J. Hine, "Physical Organic Chemistry," 2nd ed, McGraw-Hill, New York, N. Y., 1962, p 28. The value for carbon is the halfthickness of an aromatic ring.

(15) T. H. Whitesides, unpublished observations.

Figure 2. Schematic view of 2-cis, cis projected in the crystallographic mirror plane. The axial carbonyl groups, as well as the hydrogen atoms, have been omitted.

Figure 3. Relevant features of the structure of trans-Feist's acid taken from ref 13b.

Table V. Intermolecular Distances (Å)^a

C(4)…O(14) (B)	3.336 (5)	O(10)···C(11) (C)	3.337 (8)
C(5)…O(14) (B)	3.341 (6)	O(10)…O(12) (C)	3.127 (8)
O(7)…O(14) (B)	3.221 (6)	O(14)···O(14) (B)	3.031 (8)

^a Symmetry operation codes: (B) 0, -x, -y, -z; (C) 0, 1 + x, y, z.

plexes is their unusually high thermal stability. Cardaci and Narciso¹⁶ have shown that (olefin)Fe(CO)₄ complexes decompose via a dissociative mechanism in the range 30-70° with half-lives on the order of a few hours. We have observed qualitatively that disubstituted alkylolefin complexes are considerably less stable than monosubstituted olefin complexes.¹⁷ In contrast, complex 2 can be recovered in good yield after refluxing in hexane for 72 hr. This surprising stability is probably due to a combination of circumstances. In general, complexes with electron-withdrawing substitutents

⁽¹⁶⁾ G. Cardaci and V. Narciso, J. Chem. Soc., Dalton Trans., 2289 (1972).

⁽¹⁷⁾ T. H. Whitesides, R. W. Arhart, and R. W. Slaven, J. Amer. Chem. Soc., 95, 5792 (1973).

Table VI. Selected Nonbonded Intramolecular Distances (Å)

C(4) - C(9)	3.835	O(6) - C(9)	2.937
C(4) - C(13)	3.406	O(6)-C(13)	3.168
C(4) - O(10)	4.555	O(6)-O(10)	3.130
C(4)-O(14)	3.712	O(6)-O(14)	3.342
C(4)-Fe	3.235	O(6)-Fe	3.505

are more stable than those without.¹⁶⁻¹⁸ Complex 2 contains two ester functions separated from the double bond by a cyclopropane ring, which might be expected to transmit electronic effects to the olefinic linkage reasonably effectively. The increased stability of electron-deficient olefin complexes is presumably due to the increased importance of the π acceptor capabilities of the olefin ligand. In the case of 2, another influence which increases the π -acceptor ability of the olefinic linkage is the strain associated with the incorporation of an sp² center in the three-membered ring. In valence-bond terms, increasing the π -acceptor component of the bond is equivalent to increasing the contribution of resonance structure **5b**. Associated with the contribution

of this structure should be a distortion of the geometry of the ligand toward sp^3 hybridization at C(3) and a distortion of the coordination geometry at iron toward that characteristic

(18) E. Koerner von Gustorf, M. C. Henry, and D. J. McAdoo, Justus Liebigs Ann. Chem., 707, 190 (1967).

of a d⁶ complex (*i.e.*, octahedral). The considerable tilting of the three-membered ring away from the metal can be interpreted in terms of just such a distortion, magnified in this case by intramolecular repulsions between the ester groups and metal carbonyls. The enhanced importance of structure **5b** means that the methylenecyclopropane double bond is effectively a better π acceptor than a normal double bond. Because of the associated charge withdrawal from the metal the π -donor component of the C==C metal bond may be increased also, in order to maintain approximate charge neutrality in the system as a whole. Thus the total metal-C=C interaction is synergistically enhanced, and the complex substantially stabilized.

Acknowledgment. Support by the National Science Foundation through Grant GP-16358 and a departmental instrument grant, which allowed the purchase of the automated diffractometer, is gratefully acknowledged, as is a grant for computing to R. W. S. by the Research Committee of the Graduate School of the University of Wisconsin.

Registry No. η^2 -(*cis*-2,3-Dicarbomethoxymethylenecyclopropane)iron tetracarbonyl, 51464-41-6.

Supplementary Material Available. Table I, a comparison of observed and calculated structure factor amplitudes, will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105×148 mm, $24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for \$3.00 for photocopy or \$2.00 for microfiche, referring to code number INORG-74-1895.

Contribution from the Department of Chemistry, University of Illinois at Chicago Circle, Chicago, Illinois 60680

Molecules with an M_4X_4 Core. III.^{1,2} Comparison of the X-Ray Crystallographically Determined Molecular Structures of Tetrameric Triethylphosphinecopper(I) Iodide and Triethylarsinecopper(I) Iodide

MELVYN ROWEN CHURCHILL* and KRISHAN L. KALRA

Received January 17, 1974

AIC40038Z

The crystal and molecular structure of tetrameric triethylphosphinecopper(I) iodide, $[PEt_3CuI]_4$, has been determined and that for tetrameric triethylarsinecopper(I) iodide, $[AsEt_3CuI]_4$ (originally studied by Wells in 1936) has been accurately redetermined. The species $[PEt_3CuI]_4$ crystallizes in the noncentrosymmetric cubic space group I4 3m $(T_d^3; No. 217)$ with a = 13.024 (1) Å and Z = 2; $[AsEt_3CuI]_4$ is both isomorphous and isostructural, with a = 13.148 (1) Å. For each species, X-ray diffraction data complete to $2\theta = 55^\circ$ (Mo K α radiation) were collected with a Picker FACS-1 diffractometer and the structure was solved by conventional methods. Resulting discrepancy indices are $R_F = 3.48\%$ and $R_{WF} = 3.57\%$ for $[PEt_3CuI]_4$ (284 independent reflections) and $R_F = 4.07\%$ and $R_{WF} = 3.96\%$ for $[AsEt_3CuI]_4$ (295 independent reflections). Each of the tetrameric molecules lies on a site of T_d ($\overline{4}$ 3m) symmetry. The four copper and four iodine atoms, taken alternately, define the eight corners of a highly distorted "cubane" framework in which the Cu–I distance is 2.684 (1) Å for $[PEt_3CuI]_4$ and 2.677 (2) Å for $[AsEt_3CuI]_4$. The intramolecular Cu ··Cu distances are 2.927 (2) Å for $[PEt_3-CuI]_4$ and 2.783 (2) Å (*in contrast* to the value of 2.60 Å reported by Wells) for $[AsEt_3CuI]_4$. While the Cu ···Cu distances in the two molecular species differ substantially, the intramolecular I···I contacts are closely similar (I···I = 4.380 (1) Å in $[PEt_3CuI]_4$ and 4.424 (2) Å in $[AsEt_3CuI]_4$.

Introduction

The crystal structure of tetrameric triethylarsinecopper(I) iodide, $[AsEt_3CuI]_4$, was originally reported by Wells in

(1) Part I: M. R. Churchill and K. L. Kalra, *Inorg. Chem.*, 13, 1065 (1974).
 (2) Part II: M. R. Churchill and K. L. Kalra, *Inorg. Chem.*, 13, 1427 (1974).

1936;^{3,4} the molecule was found to lie on a site of T_d ($\overline{4}3m$) symmetry and the (apparently nonbonding) copper. copper distance was reported as 2.60 Å.^{3,4}

(3) A. F. Wells, Z. Kristallogr., Kristallgeometrie, Kristallphys., Kristallchem., 94, 447 (1936).
(4) F. G. Mann, D. Purdie, and A. F. Wells, J. Chem. Soc., 1503 (1936).